python - How to remove rows with specific missing tags from a Pandas dataframe? -
in pandas dataframe, '-999' (as integer) used tag indicate 'cells' missing data. cleaning data removing rows if row contains '-999' in it. tried method:
flag = (dataframe != -999) dataframe = dataframe[flag]
however, resulting dataframe still has same shape , cells -999 became empty. used line:
dataframe.dropna(axis = 0, how = 'all', inplace = true)
but did not remove rows expected. can help? thanks!
you can use .any(axis=1)
or .all(axis=1)
that:
in [92]: df out[92]: b c 0 8 7 6 1 8 0 -999 2 8 9 9 3 -999 8 9 4 4 7 6 5 5 9 9 6 6 4 8 7 5 -999 9 8 5 0 5 9 0 6 5 in [93]: df.loc[~(df == -999).any(axis=1)] out[93]: b c 0 8 7 6 2 8 9 9 4 4 7 6 5 5 9 9 6 6 4 8 8 5 0 5 9 0 6 5
or, alternatively, using .all(axis=1)
:
in [94]: df.loc[(df != -999).all(axis=1)] out[94]: b c 0 8 7 6 2 8 9 9 4 4 7 6 5 5 9 9 6 6 4 8 8 5 0 5 9 0 6 5
Comments
Post a Comment